
Int J Theor Phys (2008) 47: 280–290
DOI 10.1007/s10773-007-9472-5

Tensor Product of Distributive Sequential Effect
Algebras and Product Effect Algebras

Eissa D. Habil

Received: 28 August 2006 / Accepted: 8 June 2007 / Published online: 8 November 2007
© Springer Science+Business Media, LLC 2007

Abstract A distributive sequential effect algebra (DSEA) is an effect algebra on which
a distributive sequential product with natural properties is defined. We define the tensor
product of two arbitrary DSEA’s and we give a necessary and sufficient condition for it to
exist. As a corollary we obtain the result (see Gudder, S. in Math. Slovaca 54:1–11, 2004, to
appear) that the tensor product of a pair of commutative sequential effect algebras exists if
and only if they admit a bimorphism. We further obtain a similar result for the tensor product
of a pair of product effect algebras.

Keywords Effect algebras · Sequential products · Distributive sequential products · Tensor
products · Product effect algebras · Fuzzy sets

1 Introduction

Sequential effect algebras (abbreviated: SEA’s) have been recently introduced by Gudder
and Greechie in [2, 3] to study general properties of sequential measurements [2–4]. Impor-
tant physical models for SEA’s can be constructed from fuzzy set systems and Hilbert space
operators [3, 5–8]. In [1], Gudder studied tensor products of SEA’s because they describe
combined physical systems. Gudder proved the existence of tensor product of pairs of SEA’s
that are commutative, but not for arbitrary pairs of SEA’s.

In this paper, we introduce a stronger and a natural definition of a sequential product on
an effect algebra, which we call a distributive sequential product and thus introduce what
we shall call distributive sequential effect algebras (abbreviated: DSEA’s). This new class
properly contains the class of commutative SEA’s and is properly contained in the class of
SEA’s. Then we give a necessary and sufficient condition for the existence of the tensor
product of two arbitrary DSEA’s. As a corollary we obtain the result (see [1]) that the tensor
product of a pair of commutative SEA’s exists if and only if they admit a bimorphism.
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Another related class of effect algebras called product effect algebras (abbreviated:
PEA’s) has been introduced and studied by Dvurečenskij in [9]. As a second corollary to
our main result, we obtain the result that the tensor product of two PEA’s exists if and only
if they admit a bimorphism. Our presentation parallels the beautiful accounts of [1] and [10].

Throughout this paper, the symbol R denotes the set of all real numbers, and the notation
:= means “equals by definition”.

2 Basic Definitions

In this section we summarize the basic definitions concerning effect algebras [11] and se-
quential effect algebras [2, 3], and we present the definition of a distributive sequential effect
algebra. An effect algebra is a system (E,0,1,⊕) consisting of a set E containing two spe-
cial elements 0, 1 and equipped with a partially defined binary operation ⊕ satisfying the
following conditions ∀a, b, c ∈ E:

(EA1) If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a.
(EA2) If b ⊕ c is defined and a ⊕ (b ⊕ c) is defined, then a ⊕ b is defined, (a ⊕ b) ⊕ c is

defined, and a ⊕ (b ⊕ c)= (a ⊕ b) ⊕ c.
(EA3) For every a ∈ E there exists a unique b ∈ E such that a ⊕b is defined and a ⊕b = 1.
(EA4) If 1 ⊕ a is defined, then a = 0.

We shall write E for the effect algebra (E,0,1,⊕) if there is no danger of misunderstand-
ing. Let E be an effect algebra and a, b ∈ E. Following [11], we say that a is orthogonal to
b in E and write a⊥b if and only if a ⊕b is defined in L. We define a ≤ b to mean that there
exists c ∈ E such that a ⊥ c and b = a ⊕ c. The unique element b ∈ E corresponding to a

in Condition (EA3) above is called the orthosupplement of a and is written as a′ := b. For
any effect algebra E, it can be easily proved (see [11]) that 0 ≤ a ≤ 1 holds for all a ∈ E,
that a ⊥ b iff a ≤ b′, that, with ≤ as defined above, (E,≤,0,1) is a partially ordered set.

Example 2.1 Consider the unit interval [0,1] ⊆ R, and for a, b ∈ [0,1], define a ⊥ b if
a + b ≤ 1 in which case a ⊕ b := a + b. It is easy to check that ([0,1],0,1,⊕) is an effect
algebra.

The following example plays an important role for unsharp measurements of quantum
mechanics [5, 11].

Example 2.2 Consider the set E(H) of all self-adjoint operators A on a Hilbert space H

with O ≤ A ≤ I , where O and I are the zero and the identity operators, respectively, on H .
For A,B ∈ E(H), define

A ⊕ B := A + B iff A + B ≤ I.

It is not difficult to show that, under this ⊕, the system (E(H),O, I,⊕) forms an effect
algebra [11].

Let E and F be effect algebras. A mapping φ : E → F is called a morphism iff φ(1) = 1
and for a, b ∈ E, a ⊥ b ⇒ φ(a) ⊥ φ(b) and φ(a⊕b) = φ(a)⊕φ(b). A mapping φ : E → F

is called a monomorphism if φ is a morphism and if φ(a) ⊥ φ(b) ⇒ a ⊥ b. A surjective
monomorphism is an isomorphism. One can easily check that a morphism φ : E → F is an
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isomorphism iff φ is bijective and φ−1 is a morphism. For more about morphisms of effect
algebras (which are essentially the same as morphisms of orthoalgebras), we refer the reader
to [12, 13].

Let E,F,G be effect algebras. A mapping β : E ×F → G is called a bimorphism if and
only if

(B1) β(1,1) = 1;
(B2) β(a ⊕ b, c) = β(a, c) ⊕ β(b, c) whenever a, b ∈ E with a ⊥ b;
(B3) β(a, b ⊕ c) = β(a, b) ⊕ β(a, c) whenever b, c ∈ E with b ⊥ c.

If β : E × F → G is a bimorphism, then it is easy to check that β(·,1) and β(1, ·) are
morphisms.

Example 2.3 Let H1 and H2 be two Hilbert spaces over the same field and let E(H1)⊗E(H2)

be the standard Hilbert space tensor product and define a mapping β : E(H1) × E(H2) →
E(H1)⊗E(H2) by β(A1,A2) := A1 ⊗A2. Then it is easy to check that β is an effect algebra
bimorphism [10, 12].

For a binary operation ◦, if a ◦ b = b ◦ a we write a | b. A sequential effect algebra
(abbreviated: SEA)[2] is a system (E,0,1,⊕,◦) where (E,0,1,⊕) is an effect algebra and
◦ : E × E → E is a binary operation that satisfies the following conditions.

(S1) b −→ a ◦ b is additive for every a ∈ E.
(S2) 1 ◦ a = a for all a ∈ E.
(S3) If a ◦ b = 0, then a | b.
(S4) If a | b, then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c for all c ∈ E.
(S5) If c | a and c | b, then c | a ◦ b and c | (a ⊕ b) whenever a ⊕ b is defined.

A binary operation ◦ on E that satisfies (S1)–(S5) is called a sequential product on E. If
a | b for all a, b ∈ E, then E is called a commutative SEA.

The effect algebra [0,1] of Example 2.1 becomes a commutative SEA when a ◦ b := ab.
It has been shown in [2, 8] that the effect algebra E(H) of Example 2.2 is a (noncommuta-
tive) SEA under the operation A◦B := A

1
2 BA

1
2 where A

1
2 is the unique positive square root

of A. This Hilbert space SEA is useful for studying the foundations of quantum mechanics
[4–8]. Here are more examples of interesting SEA’s.

Example 2.4 Every Boolean algebra (B,0,1,⊕,◦) is a commutative SEA under the opera-
tions a ⊕ b := a ∨ b whenever a ∧ b = 0, and a ◦ b := a ∧ b for all a, b ∈ B .

Example 2.5 Let X be a nonempty set and let

[0,1]X := {f : f is a function from X to [0,1]}.

Let f0, f1 ∈ [0,1]X be defined by f0(x) := 0, f1(x) := 1 for all x ∈ X. A subset F ⊆ [0,1]X
is called a fuzzy set system on X [14] if f0, f1 ∈ F , if f ∈ F then f1 − f ∈ F , if f,g ∈ F
with f + g ≤ 1 then f + g ∈ F and if f,g ∈ F then fg ∈ F . Then a fuzzy set system F
becomes a commutative SEA when f ⊕ g := f + g for f + g ≤ 1 and f ◦ g := fg.

For more about SEA’s and their properties, we refer the reader to [2, 3]. The following
result has been proven in [2, 8].
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Theorem 2.6 For A,B ∈ E(H) we have B = A ◦B ⊕A′ ◦B if and only if A | B if and only
if AB = BA.

Remark 2.7 By (S1), the sequential product ◦ on any SEA E is always distributive on the
right; that is,

c ◦ (a ⊕ b) = c ◦ a ⊕ c ◦ b

whenever a ⊕ b is defined in E. However, it is not always distributive on the left; that is,

(a ⊕ b) ◦ c �= a ◦ c ⊕ b ◦ c

in general. To see this, consider the Hilbert space SEA E(H). Choose A,C ∈ E(H) such
that AC �= CA. Then by Theorem 2.6 we have

A ◦ C ⊕ A′ ◦ C �= C = I ◦ C = (A ⊕ A′) ◦ C.

We now strengthen the definition of a SEA E by requiring that the sequential product
operation on E be distributive from both left and right in order to delineate a class of SEA’s
that lies strictly between the class of commutative SEA’s and the class of SEA’s, which
admit tensor products. A distributive sequential effect algebra (abbreviated: DSEA) is a
system (E,0,1,⊕,◦) where (E,0,1,⊕) is an effect algebra and ◦ : E ×E → E is a binary
operation that satisfies the following conditions.

(DS1) b −→ a ◦ b is additive for every a ∈ E.
(DS2) b −→ b ◦ a is additive for every a ∈ E.
(DS3) 1 ◦ a = a ◦ 1 = a for all a ∈ E.
(DS4) If a ◦ b = 0, then b ◦ a = 0.
(DS5) a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ E.

A binary operation ◦ on E that satisfies (DS1)–(DS5) is called a distributive sequential
product on E.

Lemma 2.8 Every DSEA is a SEA.

Proof Let E be a DSEA. We show that E satisfies (S1)–(S5). Clearly, (S1) follows from
(DS1), (S2) follows from (DS3), and (S3) follows from (DS4). To show (S4) holds, suppose
that a | b. Then we have

a = a ◦ 1 = a ◦ (b ⊕ b′) = a ◦ b ⊕ a ◦ b′

and

a = 1 ◦ a = (b ⊕ b′) ◦ a = b ◦ a ⊕ b′ ◦ a;
so that

a ◦ b ⊕ a ◦ b′ = b ◦ a ⊕ b′ ◦ a.

Since a ◦b = b ◦a, the cancellation law implies that a ◦b′ = b′ ◦a. Hence a | b′. The second
part of (S4) follows from (DS5). Thus (S4) holds. To verify (S5), suppose that c | a and c | b.
Then, by (DS5), we have

c ◦ (a ◦ b) = (c ◦ a) ◦ b = (a ◦ c) ◦ b = a ◦ (c ◦ b) = a ◦ (b ◦ c) = (a ◦ b) ◦ c;
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so that c | a ◦ b. Moreover, if a ⊕ b is defined, then, by (DS1) and (DS2), we have

c ◦ (a ⊕ b) = c ◦ a ⊕ c ◦ b = a ◦ c ⊕ b ◦ c = (a ⊕ b) ◦ c;
so that c | (a ⊕ b). Thus (S5) holds, and therefore E is a SEA. �

Remark 2.9 (1). The converse of Lemma 2.8 is not true; that is, not every SEA is a DSEA.
For example, the Hilbert space SEA E(H) is not a DSEA.

(2). It can be easily checked that every commutative SEA is a DSEA, and therefore
our earlier examples of commutative SEA’s, namely the unit interval [0,1], every Boolean
algebra, and any fuzzy set system F ⊆ [0,1]X , are now examples of DSEA’s. However, not
every DSEA is a commutative SEA, as the following example shows.

Example 2.10 Let E = HS(I1, I2) be the horizontal sum of the SEA (I1,0,1,⊕1,◦1) and
the SEA (I2,0,1,⊕2,◦2), where I1 = I2 = [0,1] (see [2]). Define an orthosum ⊕ on E as
follows. For a, b ∈ E, define a ⊕ b := a ⊕i b if and only if a, b ∈ Ii with a ⊕i b is defined in
Ii and no other orthosums are defined on E. Let φij : Ii → Ij , i �= j ∈ {1,2} be the natural
identification (identity) mapping, and define ◦ on E by

a ◦ b :=
{

a ◦i b, if a, b ∈ Ii for some i ∈ {1,2},
a ◦i φji(b), if a ∈ Ii \ {0,1}, b ∈ Ij \ {0,1}, i �= j ∈ {1,2}.

It has been shown in [2] that under the above-defined operations ⊕ and ◦, E is a noncom-
mutative SEA.

We now show that E is a DSEA. Note first that (DS1) follows from (S1). To verify (DS2),
suppose that a ⊕ b is defined in E,c ∈ E. If a, b, c ∈ Ii for some i ∈ {1,2}, then

(a ⊕ b) ◦ c = (a ⊕i b) ◦i c = a ◦i c ⊕i b ◦i c = a ◦ c ⊕ b ◦ c.

Otherwise, a, b ∈ Ii, c ∈ Ij , i �= j ∈ {1,2}, and we have

(a ⊕ b) ◦ c = (a ⊕i b) ◦i φji(c) = a ◦i φji(c) ⊕i b ◦i φji(c) = a ◦ c ⊕ b ◦ c.

Thus, (DS2) holds. Since E is a SEA, it follows from [14, Lemma 3.1] that a ◦1 = 1◦a = a

for all a ∈ E. Thus (DS3) holds. It is clear that (DS4) follows from (S3). To verify (DS5),
let a, b, c ∈ E. If a, b, c ∈ Ii for some i ∈ {1,2}, then

a ◦ (b ◦ c) = a ◦i (b ◦i c) = (a ◦i b) ◦i c = (a ◦ b) ◦ c.

Otherwise, a, b ∈ Ii, c ∈ Ij , i �= j ∈ {1,2}, and we have

(a ◦ b) ◦ c = (a ◦i b) ◦i φji(c) = a ◦i (b ◦i φji(c)) = a ◦ (b ◦ c).

It follows that the class of DSEA’s properly contains the class of commutative SEA’s and
is properly contained in the class of SEA’s. It has been proven in [1] that the tensor product
of two commutative SEA’s exists if and only if they admit a SEA-bimorphism. However, it is
not known whether the tensor product of arbitrary SEA’s exists [1, 14]. For more about open
problems on SEA’s we refer the reader to [14]. We shall show in the next section that the
tensor product of two arbitrary DSEA’s exists if and only if they admit a DSEA-bimorphism.
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3 Tensor Products

Let E and F be DSEA’s. A DSEA-morphism φ : E → F is an effect algebra morphism that
satisfies

φ(a ◦ b) = φ(a) ◦ φ(b) for every a, b ∈ E.

A DSEA-morphism that is an effect algebra isomorphism is a DSEA-isomorphism. If G

is also a DSEA, a DSEA-bimorphism is a map β : E × F → G that is an effect algebra
bimorphism satisfying

β(a, b) ◦ β(c, d) = β(a ◦ c, b ◦ d)

for every a, c ∈ E, b, d ∈ F . The DSEA tensor product of E and F is a pair (T , τ ) consist-
ing of a DSEA T and DSEA-bimorphism τ : E × F → T such that

(T1) Every a ∈ T has the form a = τ(a1, b1) ⊕ · · · ⊕ τ(an, bn).
(T2) If β : E × F → G is a DSEA-bimorphism, then there exists a DSEA-morphism φ :

T → G such that β = φ ◦ τ .

It is easy to show that if the DSEA tensor product of two DSEA’s exists, then it is unique
up to a DSEA-isomorphism; that is, if (T , τ ) and (T ∗, τ ∗) are DSEA tensor products of
the DSEA’s E and F , then there exists a unique DSEA-isomorphism φ : T → T ∗ such that
φ(τ(a, b)) = τ ∗(a, b) for all a ∈ E, b ∈ F .

We now present the main result, which gives a necessary and sufficient condition for
pairs E and F of DSEA’s to admit a tensor product. A finite sequence A = {(ai, bi)}n

i=1 in
E × F is orthosummable if

⊕
β(A) :=

n⊕
i=1

β(ai, bi)

is defined for every DSEA-bimorphism β .

Theorem 3.1 The DSEA tensor product of two DSEA’s E and F exists if and only if E and
F admit a DSEA-bimorphism β : E × F → G for some DSEA G.

Proof The necessity of the condition is evident. For sufficiency, suppose that E and F sat-
isfy the stated condition. Let K be the set of all finite sequences K in E × F such that⊕

β(K) = 1 for every DSEA-bimorphism β on E × F . Evidently, K is nonempty since
{(1,1)} ∈ K. Let E(K) be the set of all finite sequences {(ai, bi)}n

i=1 in E × F for which
there exists a finite sequence {(cj , dj )}m

j=1 in E × F such that

{(a1, b1), . . . , (an, bn), (c1, d1), . . . , (cm, dm)} ∈ K.

Define a relation ∼ on E(K) by A ∼ B if and only
⊕

β(A) = ⊕
β(B) for every DSEA-

bimorphism β on E × F . Then ∼ is an equivalence relation, and for A ∈ E(K) we let

π(A) := {B ∈ E(K) : B ∼ A},

and we let

Π(K) := {π(A) : A ∈ E(K)}.
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Following the construction of [1, 10], we now organize Π(K) into a DSEA as follows.
Define 0 := π({(0,0)}) ∈ Π(K) and 1 := π({(1,1)}) ∈ Π(K). For A = {(ai, bi)}n

i=1 ∈ E(K)

and B = {(cj , dj )}m
j=1 ∈ E(K), we define π(A) ⊥ π(B) if and only if

C := {(a1, b1), . . . , (an, bn), (c1, d1), . . . , (cm, dm)} ∈ E(K). (1)

Then, by definition of E(K), there exists a D ∈ E(K) such that

⊕
β(A) ⊕

⊕
β(B) ⊕

⊕
β(D) = 1 (2)

for every DSEA-bimorphism β on E × F . We note that the relation ⊥ is well defined, since
if A′ ∼ A and B ′ ∼ B , then for every DSEA-bimorphism β on E × F we have, by (2), that

⊕
β(A′) ⊕

⊕
β(B ′) ⊕

⊕
β(D) = 1. (3)

Hence, for A′ = {(a′
i , b

′
i )}n

i=1 and B ′ = {(c′
j , d

′
j )}m

j=1 we have, by(3), that

C ′ := {(a′
1, b

′
1), . . . , (a

′
n, b

′
n), (c

′
1, d

′
1), . . . , (c

′
m,d ′

m)} ∈ E(K), (4)

and therefore π(A′) ⊥ π(B ′).
We define an orthosum ⊕ on Π(K) as follows. If π(A) ⊥ π(B) we let

π(A) ⊕ π(B) := π(C),

where C ∈ E(K) is given by (1). We note that the operation ⊕ is well defined. Indeed,
if A′ ∼ A and B ′ ∼ B , where A′,B ′ are as given above, then, by (4), there exists a set
C ′ ∈ E(K) such that

⊕
β(C) = ⊕

β(C ′) for every DSEA-bimorphism β on E ×F . Hence,
π(C) = π(C ′). Now it can be easily checked that the system (Π(K),0,1,⊕) is an effect
algebra. Next, we claim that for A = {(ai, bi)}n

i=1 ∈ E(K) and B = {(cj , dj )}m
j=1 ∈ E(K)

there exists a C ∈ E(K) such that

⊕
β(C) =

⊕
β(A) ◦

⊕
β(B) =

⊕
β(B) ◦

⊕
β(A) (5)

for every DSEA-bimorphism β on E × F . Indeed, let

C := {(ai ◦ cj , bi ◦ dj ) : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Clearly, C is orthosummable and for every DSEA-bimorphism β on E × F we have, by
properties (DS1), (DS2) and (EA2), that

⊕
β(C) =

n⊕
i=1

m⊕
j=1

β(ai ◦ cj , bi ◦ dj )

=
m⊕

j=1

n⊕
i=1

β(ai ◦ cj , bi ◦ dj )

=
m⊕

j=1

[
n⊕

i=1

(β(ai, bi) ◦ β(cj , dj ))

]
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=
m⊕

j=1

[(
n⊕

i=1

(β(ai, bi)) ◦ β(cj , dj )

)]

=
(

n⊕
i=1

(β(ai, bi))

)
◦

(
m⊕

j=1

β(cj , dj )

)

=
⊕

β(A) ◦
⊕

β(B).

The second equality in (5) is proved similarly. To complete the proof of the above claim, it
remains to show that C ∈ E(K). Since B ∈ E(K), there exists a B ′ ∈ E(K) such that

⊕
β(B) ⊕

⊕
β(B ′) = 1.

Then, by the above argument with B ′ in role of B , there exists a finite sequence C ′ in E ×F

that is orthosummable and satisfies

⊕
β(C ′) =

⊕
β(A) ◦

⊕
β(B ′)

for every DSEA-bimorphism β on E ×F . Hence, for every DSEA-bimorphism β on E ×F

we have

⊕
β(C) ⊕

⊕
β(C ′) =

(⊕
β(A) ◦

⊕
β(B)

)
⊕

(⊕
β(A) ◦

⊕
β(B ′)

)

=
(⊕

β(A)
)

◦
((⊕

β(B) ⊕
⊕

β(B ′)
))

=
(⊕

β(A)
)

◦ 1

=
⊕

β(A).

Since A ∈ E(K), it follows that C ∈ E(K), as desired.
We define a binary operation ◦ on Π(K) by

π(A) ◦ π(B) := π(C)

where C is given by (5) of the above claim. It follows from the above claim that the operation
◦ is well defined. We now show that ◦ is a distributive sequential product on Π(K). Suppose
that π(A),π(B),π(C) ∈ Π(K) are such that π(B) ⊥ π(C). Then, by the first part of the
above claim applied twice to A,B and A,C, there exist D,H ∈ E(K) such that for every
DSEA-bimorphism β on E × F we have

⊕
β(D) =

⊕
β(A) ◦

⊕
β(B),

⊕
β(H) =

⊕
β(A) ◦

⊕
β(C).

(6)

Hence, for every DSEA-bimorphism β on E × F we have, by (6), that

⊕
β(D) ⊕

⊕
β(H) =

⊕
β(A) ◦

[⊕
β(B) ⊕

⊕
β(C)

]
, (7)
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which implies that
⊕

β(D) ⊥ ⊕
β(H). Therefore, it follows from this, (6) and (7) that

π(A) ◦ π(B) ⊥ π(A) ◦ π(C) and

π(A) ◦ [π(B) ⊕ π(C)] = π(D) ⊕ π(H) = π(A) ◦ π(B) ⊕ π(A) ◦ π(C)

so that (DS1) holds. Using the second part of the above claim (see (5)), it can be shown that
a similar argument yields

[π(B) ⊕ π(C)] ◦ π(A) = π(B) ◦ π(A) ⊕ π(C) ◦ π(A)

so that (DS2) holds. For K ∈ K and A ∈ E(K) we have
⊕

β(K) = 1 and so

⊕
β(A) = ⊕

β(K) ◦ ⊕
β(A) = ⊕

β(A) ◦ ⊕
β(K)

for every DSEA-bimorphism β on E × F . Hence,

1 ◦ π(A) = π(K) ◦ π(A) = π(A) and π(A) ◦ 1 = π(A) ◦ π(K) = π(A)

so that (DS3) holds. Suppose that π(A)◦π(B) = 0. Then for every DSEA-bimorphism β on
E × F we have

⊕
β(A) ◦ ⊕

β(B) = 0 so that, by property (DS4),
⊕

β(B) ◦ ⊕
β(A) = 0

and hence π(B)◦π(A) = 0. Thus, (DS4) holds. For every A,B,C ∈ E(K) and every DSEA-
bimorphism β on E × F we have

⊕
β(A) ◦

[⊕
β(B) ◦

⊕
β(C)

]
=

[⊕
β(D) ◦

⊕
β(B)

]
◦

⊕
β(C).

Hence,

π(A) ◦ [π(B) ◦ π(C)] = [π(A) ◦ π(B)] ◦ π(C)

and (DS5) holds. We conclude that (Π(K),0,1,⊕,◦) is a DSEA.
Finally, to construct the desired bimorphism, notice, first, that for every (a, b) ∈ E ×

F we have {(a, b)} ∈ E(K). Indeed, if C := {(a, b), (a, b′), (a′,1)}, then for every DSEA-
bimorphism β on E ×F we have

⊕
β(C) = 1 so that C ∈ K and therefore {(a, b)} ∈ E(K).

Now define τ : E × F → Π(K) by

τ(a, b) := π[{(a, b)}]
for every (a, b) ∈ E × F . Clearly, τ(1,1) = 1. For a ∈ E and for b, c ∈ F with b ⊥ c, we
have

β(a, b ⊕ c) = β(a, b) ⊕ β(a, c)

for every DSEA-bimorphism β on E × F , so that {(a, b ⊕ c)} ∼ {(a, b), (a, c)}. Hence,

τ(a, b ⊕ c) = τ(a, b) ⊕ τ(a, c)

and similarly, for a, d ∈ E with a ⊥ d and for b ∈ F , we have

τ(a ⊕ d, b) = τ(a, b) ⊕ τ(d, b).

For (a, b), (c, d) ∈ E × F we have

β(a, b) ◦ β(c, d) = β(a ◦ c, b ◦ d)
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for every DSEA-bimorphism β on E × F . Hence,

π [{(a, b)}] ◦ π [{(c, d)}] = π [{(a ◦ c, b ◦ d)}]
and we have

τ(a, b) ◦ τ(c, d) = τ(a ◦ c, b ◦ d).

Thus, τ is a DSEA-bimorphism. Moreover, any element in Π(K) has the form

π [{(a1, b1), . . . , (an, bn)}] = π [{(a1, b1)}] ⊕ · · · ⊕ π[{(an, bn)}]
= τ(a1, b1) ⊕ · · · ⊕ τ(an, bn)

for some {(a1, b1), . . . , (an, bn)} ∈ E(K). Finally, to show that τ has the desired universal
property, let β : E × F → G be a DSEA-bimorphism. Define φ : Π(K) → G by

φ[π(A)] :=
⊕

β(A).

Evidently, φ is well defined and it is easy to check that φ is a DSEA-morphism. Moreover,

β(a, b) = φ[π({(a, b)})] = φ ◦ τ(a, b)

for every (a, b) ∈ E × F , so that β = φ ◦ τ . Thus, we have shown that (Π(K), τ ) is the
DSEA tensor product of the DSEA’s E and F . �

Since every commutative SEA is a DSEA, we get, as a consequence of our result, the
following result which is proved in [1].

Corollary 3.2 The SEA tensor product of two commutative SEA’s exists if and only if they
admit a SEA-bimorphism.

Dvurečenskij [9] has introduced the following definition. A product effect algebra (ab-
breviated: PEA) is a system (E,0,1,⊕, ·) where (E,0,1,⊕) is an effect algebra and
· : E × E → E is a binary operation that satisfies the following conditions.

(PE1) b −→ a · b is additive for every a ∈ E.
(PE2) b −→ b · a is additive for every a ∈ E.

A binary operation ◦ on E that satisfies (PE1) and (PE2) is called a product on E. An
element u of a PEA E is said to be a product unity, if a · u = u · a = a for every a ∈ E.
A product · on E is

(i) associative if a · (b · c) = (a · b) · c for every a, b, c ∈ E;
(ii) commutative if a · b = b · a for every a, b ∈ E.

It should be noted from the definitions of DSEA’s and PEA’s that every DSEA
(E,0,1,⊕,◦) is an associative PEA having 1 as a product unity. Thus all our earlier exam-
ples of DSEA’s are now examples of PEA’s. Dvurečenskij has studied in [9] the category of
PEA’s with the Riesz decomposition property and having 1 as a product unity.

We now study the PEA tensor product of PEA’s having 1 as a product unity. We de-
fine PEA-morphisms and PEA-bimorphisms in exactly the same way we defined them for
DSEA’s. The PEA tensor product of two PEA’s E and F having 1 as a product unity is
a pair (T , τ ) consisting of a PEA T having 1 as a product unity and PEA-bimorphism
τ : E × F → T such that
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(T1) Every a ∈ T has the form a = τ(a1, b1) ⊕ · · · ⊕ τ(an, bn).
(T2) If β : E × F → G is a DSEA-bimorphism, then there exists a DSEA-morphism φ :

T → G such that β = φ ◦ τ .

By re-examining the proof of Theorem 3.1, we notice that it contains the proof of the
following result.

Theorem 3.3 The PEA tensor product of two PEA’s E and F having 1 as a product unity
exists if and only if E and F admit a PEA-bimorphism β : E × F → G for some PEA G

having 1 as a product unity.
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